Image Processing

Introduction to MATLAB

MATLAB Basics

e MATLAB can be thought of as a super-powerful
graphing calculator

e In addition it is a programming language
@ MATLAB is an interpreted language, like Java
@ Commands executed line by line

Help/Docs

help
@ The most important function for learning MATLAB on
your own
To get info on how to use a function:
» help sin

@ Help lists related functions at the bottom and links to
the doc

To get a nicer version of help with examples and easy-to-
read descriptions:

» doc sin

To search for a function by specifying keywords:
» doc + Search tab

Variable Types

MATLAB is a weakly typed language
@ No need to initialize variables!

MATLAB supports various types, the most often used are
» 3.84
@ 64-bit double (default)
» ‘a’

@316-bit char

Most variables you'll deal with will be vectors or matrices of
doubles or chars

Other types are also supported: complex, symbolic, 16-bit
and 8 bit integers, etc. You will be exposed to all these
types through the homework

Naming variables

To create a variable, simply assign a value to a name:
» varl=3.14

» myString=‘hello world’

Variable names
@ first character must be a LETTER
& after that, any combination of letters, numbers and _
@ CASE SENSITIVE! (varl is different from vVarl)

Built-in variables. Don’t use these names!
@1 and j can be used to indicate complex numbers

@ pi has the value 3.1415926...

) ans stores the last unassigned value (like on a calculator)
@ Inf and -Inf are positive and negative infinity

Z'NaN represents ‘Not a Number’

Scalars

e A variable can be given a value explicitly
» a = 10
@ shows up in workspace!

e Or as a function of explicit values and existing variables
» ¢ = 1.3*%45-2%3

e To suppress output, end the line with a semicolon
» d = 13/3;

Arrays

e Like other programming languages, arrays are an
important part of MATLAB

e Two types of arrays

—

[
| (1) matrix of numbers (either double or complex) |
~J

(2) cell array of objects (more advanced data structure)

ROW Vectors

e Row vector: comma or space separated values between
brackets

» row = [1 2 5.4 -6.6]
» row = [1, 2, 5.4, -6.6];

e Command window: >> row=[1 2 5.4 -6.6]

e Workspace:

Wor kspace
=X e

Narme Size Bvtes Class

HH row 14 32 |double array

Column Vectors

e Column vector: semicolon separated values between
brackets

» column [(4;2;7;4]

> column=[4;2;7;4]

Command window: olumn -

= =] M

e Workspace:

@ B Y stk oo |

N ame Size Bytes Class

B column ‘f-]:-cl 32 double array

size & length

You can tell the difference between a row and a column
vector by:

@ Looking in the workspace
@ Displaying the variable in the command window
@ Using the size function

*» size (row) >» gsilze {column)
ans = ans =

1 4 4 1

To get a vector's length, use the length function

>> lengthi{row) *»> length{column)

ans = ans =

Matrices

e Make matrices like vectors
I by el F 2}
e Element by element a=

e By concatenating vectors or matrices (dimension matters)
» a = [1 2] ; e

» b = [3 4]; — B
» ¢ = [5;5];\.
» d = [a;b];/

» e = [d e¢];
» £ = [[e e]l;[a b al];
» str = ['Hello, I am ' 'John'];

@ Strings are character vectors

save/clear/load

e Use save to save variables to a file
» save myFile a b
@ saves variables a and b to the file myfile.mat
@ myfile.mat file is saved in the current directory
& Default working directory is
» \MATLAB

?» Make sure you're in the desired folder when saving files. Right
now, we should be in:

» MATLABR\IAPMATLAB\dayl

. Use clear to remove variables from environment
» clear a b

2 look at workspace, the variables a and b are gone

e Use load to load variable bindings into the environment
» load myFile

2 look at workspace, the variables a and b are back

e (Can do the same for entire environment
» save myenv; clear all; load myenv;

Basic Scalar Operations

Arithmetic operations (+,-,*,/)
» T7/45

» (14+1i) *(2+1)

» 1 /0

» 0/ 0

Exponentiation ()
» 472
» (3+4*%3) "2

Complicated expressions, use parentheses
» ((2+3)*3)70.1

Multiplication is NOT implicit given parentheses
» 3(1+0.7) gives an error

To clear command window
» clec

Built-in Functions

e MATLAB has an enormous library of built-in functions

e Call using parentheses - passing parameter to function
» sqrt(2)
» log(2), logl0(0.23)
» cos(l.2), atan(-.8)
» exp(2+4*1i)
» round(1.4), floor(3.3), ceil(4.23)
» angle(i); abs(1+i);

Transpose

The transpose operators turns a column vector into a row
vector and vice versa

» a = [1 2 3 441]
» transpose (a)

» a'

» a.'

The .' gives the Hermitian-transpose, i.e. transposes and
conjugates all complex numbers

For vectors of real numbers .' and ' give same result

Addition and Subtraction

Addition and subtraction are element-wise; sizes must
match (unless one is a scalar):

[12 3 32 -11] 12113119
+2 11 -30 32] o

10| 13| | =23
=[14 14 2 21] o | 133l |53

The following would give an error
» ¢ = row + column

Use the transpose to make sizes compatible
» ¢ = row’ + column

» ¢ = row + column’

Can sum up or multiply elements of vector
» s=sum(row) ;

» p=prod(row) ;

Element-Wise Functions

All the functions that work on scalars also work on vectors
» £t = [1 2 3];
» £ = exp(t);
2 1is the same as
» £ = [exp(l) exp(2) exp(3)]:;

If in doubt, check a function’s help file to see if it handles
vectors element-wise

Operators (* / ™) have two modes of operation
o element-wise
@ standard

Operators: element-wise

e To do element-wise operations, use the dot: . (.*, ./, .*).
BOTH dimensions must match (unless one is scalar)!

» a=[1 2 3];b=[4;2;1];
» a.*b, a./b, a.”b # all errors
» a.*b', a./b’, a.~(b’) & all valid

4] 1 1 1] 1 2 3] 1 2 3
[1 2 3].*/2{=ERROR {2 2 2].*[1 2 3}{2 4 6}
1 33 3/ {12 3|13 6 9
1 :4: 4 3x3.¥3x3=3x3
2(.*2|=|4
3 (1] |3 L
x*3x 3x . }[]
3 4 3 4

Can be any dimension

Operators: standard

Multiplication can be done in a standard way or element-wise
Standard multiplication (*) is either a dot-product or an outer-
product

2> Remember from linear algebra: inner dimensions must MATCH!!
Standard exponentiation () can only be done on square matrices
or scalars
Left and right division (/ \) is same as multiplying by inverse

& Our recommendation: just multiply by inverse (more on this

later)

4 1 2 1 2171 2 1 1 1)1 2 3] 3 6 9
Ay — %

2 3% 2 =11 LJ"[;JLJ 2 2 2(*1 2 3|=|6 12 18

1 Must be square to do powers 13 3 3|1 2 3] |9 18 27

|x3%3x]1=1x1 3x3*¥3Ix3I=3x3

Automatic Initialization

e Initialize a vector of ones, zeros, or random numbers
» o=ones(1l,10)
2 row vector with 10 elements, all 1
» z=zeros (23,1)
@ column vector with 23 elements, all 0
» r=rand(1l,45)
@ row vector with 45 elements (uniform [0,1])
» n=nan(1l,69)

@ row vector of NaNs (useful for representing uninitialized
variables)

The general function call is:
var=zeros (M, N) ;

Number of rows Number of columns

Automatic Initialization

e To initialize a linear vector of values use linspace
» a=linspace(0,10,5)
@ starts at 0, ends at 10 (inclusive), 5 values

e Can also use colon operator (:)
» b=0:2:10
@ starts at 0, increments by 2, and ends at or before 10
@ increment can be decimal or negative
» c=1:5
& if increment isn't specified, default is 1

e To initialize logarithmically spaced values use logspace
@ similar to linspace, but see help

Vector Indexing

MATLAB indexing starts with 1, not O
a(n) returns the nt" element

a=[13 5 9 10
7\

a(1) a(2) a(3) a(4)

The index argument can be a vector. In this case, each
element is looked up individually, and returned as a vector
of the same size as the index vector.

» x=[12 13 5 8];
» a=x(2:3); » a=[13 5];
» b=x(1l:end-1); »b=[12 13 5];

Matrix Indexing

e Matrices can be indexed in two ways
© using subscripts (row and column)
@ using linear indices (as if matrix is a vector)

e Matrix indexing: subscripts or linear indices

o \

b(1,1)—[14 33| b(1,2) b(1) —[14 33]— b(3)
b(2,1)—| 9 8 |— b(2,2) b(2)—| 9 8 |— b(4)

e Picking submatrices
» A = rand(5)
» A(1:3,1:2)
» A([1 5 3], [1 4])

Advanced Indexing 1

e To select rows or columns of a matrix, use the :

125
=
-2 13

» d=c (1, :) ;| =— (=12 5] ;
» e=C(:,2) ; ———@=[5;13];

» ¢(2,:)=[3 6]; %replaces second row of

Advanced Indexing 2

MATLAB contains functions to help you find desired values
within a vector or matrix

» vec = [5 31 9 7]

To get the minimum value and its index:
» [minVal,minInd] = min(vec);

Z'max works the same way

To find any the indices of specific values or ranges
» ind = find(vec == 9);
» ind = find(vec > 2 & vec < 6);

In Matrices
e To convert between subscripts and indices, use ind2sub,

and sub2ind. Look up help to see how to use them.

Relational Operators

e MATLAB uses mostly standard relational operators

2 equal

> not equal

% greater than

% less than

?» greater or equal

2 less or equal
e Logical operators

Z And

& Or

Z: Not

@ Xor

@ All true

2 Any true

=

<

==

< =

elementwise short-circuit
& &&

I |

i~

XOr
all
any

e Boolean values: zero is false, nonzero is true
e See help . for a detailed list of operators

iIf /else/elseif

e Basic flow-control, common to all languages
e MATLAB syntax is somewhat unique

IF ELSE ELSEIF
if cond if cond if cond1
c)?mands commandsl commandsl
end else elseif cond2
\ commands2 commands2
Conditional statement: end else
evaluates to true or false commands3
end

» No need for parentheses: command blocks are between
reserved words

for

for loops: use for a known number of iterations

MATLAB syntax:

Loop variable

forn=1:100
commands
end

I

Command block

The loop variable
@ Is defined as a vector

@ Is a scalar within the command block

2> Does not have to have consecutive values (but it's usually
cleaner if they're consecutive)

The command block

@ Anything between the for line and the end

while

e The while is like a more general for loop:
© Don't need to know number of iterations

WHILE

while cond
commands
end

e The command block will execute while the conditional
expression is true

e Beware of infinite loops!

Working with Images

* Use imread to open an image
— Im1=imread(‘sample.bmp’);

* Images are stored as matrices. Try:
— size(Im1)

* Display images using imshow

— imshow(Im1)

Example Demo

Reading an image

Changing the values of some pixels
Display original and modified images
Draw histogram

