Digital Image Processing

Image and Video Compression

Topics

- Image Compression
 - Run-length
 - Huffman Coding
 - Arithmetic Coding
 - JPEG
- Video Compression
 - Mpeg coding
- Multi-resolution Image Processing
 - Wavelet Transform
 - Image Compression using DWT

Data Redundancy

- Redundancy in information theory is the number of bits used to transmit a message minus the number of bits of actual information in the message.
- Informally, it is the amount of wasted "space" used to transmit certain data

Data Compression

• Data compression or source coding is the process of encoding information using fewer bits (or other information-bearing units) than an un-encoded representation would use through use of specific encoding schemes.

Image Compression

Image Compression

- Importance of Image Compression
 - Typical image resolution/depth
 - 1024 x 1024 x 24
 - Typical image size in bytes: 3 MB
 - Typical video rate/resolution/depth
 - 30 fps, 720×576 , 24 bits
 - Typical video size for 1 minute: More than 2 GB

Compression Methods

- Lossless Methods
- Lossy Methods

Run Length Coding

- In this method runs of data (that is, sequences in which the same data value occurs in many consecutive data elements) are stored as a single data value and count.
- Useful in relatively simple graphic images such as icons, line drawings, and animations.
- Example,

Entropy Coding

- Entropy coding is a lossless coding method.
- Entropy coding creates variable length codeword. The length of each codeword is approximately proportional to the negative logarithm of its probability.
- Huffman Coding

Huffman coding is an entropy encoding algorithm used for lossless data compression.

• The term *Entropy Coding* refers to the use of a variablelength code table for encoding a source symbol

Example of Variable Length Coding

r_k	$p_r(r_k)$	Code 1	$l_I(r_k)$	Code 2	$l_2(r_k)$
$r_{87} = 87$	0.25	01010111	8	01	2
$r_{128} = 128$	0.47	1000000	8	1	1
$r_{186} = 186$	0.25	11000100	8	000	3
$r_{255} = 255$	0.03	11111111	8	001	3
r_k for $k \neq 87, 128, 186, 255$	0	—	8	—	0

Huffman Coding Example

Origina	Source reduction					
Symbol	Probability	1	2	3	4	
$a_2 \\ a_6 \\ a_1 \\ a_4 \\ a_3 \\ a_5$	0.4 0.3 0.1 0.1 0.06 0.04	0.4 0.3 0.1 0.1 0.1	0.4 0.3 ► 0.2 0.1	0.4 0.3 – ► 0.3 –	→ 0.6 0.4	

Huffman Coding Example

Original source				Source reduction						
Symbol	Probability	Code	1	L	2	2		3	2	4
$a_2 \\ a_6 \\ a_1 \\ a_4 \\ a_3 \\ a_5 $	0.4 0.3 0.1 0.06 0.04	1 00 011 0100 01010 01011	0.4 0.3 0.1 0.1 0.1	1 00 011 0100 - 0101 -	0.4 0.3 0.2 0.1	1 00 010 - 011 -	0.4 0.3 —0.3	1 00 - 01 -	0.6 0.4	0 1

Arithmetic Coding

- The output from an arithmetic coding process is a single number less than 1 and greater than or equal to 0
- This single number can be uniquely decoded to create the exact stream of symbols that went into its construction.

Example: $a_1a_2a_3a_3a_4$

Source Symbol	Probability	Initial Subinterval
a_1	0.2	[0.0, 0.2)
a_2	0.2	[0.2, 0.4)
a_3	0.4	[0.4, 0.8)
a_4	0.2	[0.8, 1.0)

Example

Lossy Compressions

• A lossy compression is a data compression method which discards (loses) some of the data, in order to achieve a high compression rate, with the result that decompressing the data yields content that is different from the original one.

JPEG Standard

- Steps followed in JPEG
 - Color space transformation
 - Down-sampling
 - Block splitting
 - Discrete cosine transform
 - Quantization
 - Run length and Entropy coding

Color space transformation

- First, the image should be converted from RGB into YCbCr color space
- The compression is more efficient as the brightness information, which is more important to the eventual perceptual quality of the image, is confined to a single channel, more closely representing the human visual system.

Down Sampling

- Due to the densities of color- and brightness sensitive receptors in the human eye, humans can see considerably more fine detail in the brightness of an image (the Y component) than in the color of an image (the Cb and Cr components).
- Down-sample Cb and Cr components only 4:2:0

Splitting the Frame into Blocks

• After sub-sampling, each channel must be split into 8×8 blocks of pixels.

Discrete cosine transform

52	55	61	66	70	61	64	73
63	59	55	90	109	85	69	72
62	59	68	113	144	104	66	73
63	58	71	122	154	106	70	69
67	61	68	104	126	88	68	70
79	65	60	70	77	68	58	75
85	71	64	59	55	61	65	83
87	79	69	68	65	76	78	94

$$G_{u,v} = \alpha(u)\alpha(v)\sum_{x=0}^{7}\sum_{y=0}^{7}g_{x,y}\cos\left[\frac{\pi}{8}\left(x+\frac{1}{2}\right)u\right]\cos\left[\frac{\pi}{8}\left(y+\frac{1}{2}\right)v\right]$$

$$lpha_p(n) = egin{cases} \sqrt{rac{1}{8}}, & ext{if } n=0 \ \sqrt{rac{2}{8}}, & ext{otherwise} \end{cases}$$

Result of DCT

Quantization

• Quantization is done by simply dividing each component in the frequency domain by a constant for that component, and then rounding to the nearest integer

Sample Quantization Table

[16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Quantization Results

Zig-Zag Scanning and Run Length Coding

Zig-Zag Scanning

Variable length codes

- Variable length codes are generated for the code words of the zig-zag scan result.
- Trailing zeros are truncated by inserting an EOB symbol after the last non-zero value.

Typical compression ratios

- The compression ration depends on the quantization factors used.
- Typical ratio is 4:1

Video Compression

- Video may be defined as a sequence of still images taken at very short time intervals.
- Each image of a video is called a frame
- The number of frames per second is called frame rate or time resolution of the video

Temporal Redundancy

- Short time interval between the frames of a video implies a high degree of similarity between the consecutive frames.
- This similarity can be used to further compressing the video data.
- The redundancy resulting from the similarity of the frames of a video is called temporal redundancy

Motion Estimation

- For each frame block, the most similar location in its previous frame is found.
- To eliminate temporal redundancy, only the difference with the most similar area is encoded.
- The location of the most similar area in the previous frame is indicated using a Motion Vector

Motion Estimation

Frame *t-1* (*Reference Frame*)

Frame *t* (*Predicted frame*)

MCTF

• MCTF = Motion Compensated Temporal Filtering

Similarity Measurement

- Sum of Absolute Difference (SAD) is generally used for similarity measurement.
- SAD is defined as:

$$SAD = \sum_{i} \sum_{j} |B_i - R_j|$$

where B is the block and R is the reference image

Group of Pictures

Discrete Wavelet Transform

• Unlike the discrete Fourier transform, which can be completely defined by two transform equations using two kernel functions, Discrete Wavelet Transform refers to a class of transforms that differ not only in the transformation kernels but also in the fundamental nature of those functions

DWT Properties

• Separability, Scalability, and Translatability

$$\psi^{H}(x, y) = \psi(x)\varphi(y)$$

$$\psi^{V}(x, y) = \varphi(x)\psi(y)$$

$$\psi^{D}(x, y) = \psi(x)\psi(y)$$

$$\varphi_{j,k}(x) = 2^{j/2} \varphi(2^j x - k) \psi_{j,k}(x) = 2^{j/2} \psi(2^j x - k)$$

DWT Properties

• Multiresolution

Haar Transform

• Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis

The Haar wavelet's mother wavelet function $\psi(t)$ can be described as

 $\psi(t) = \begin{cases} 1 & 0 \le t < 1/2, \\ -1 & 1/2 \le t < 1, \\ 0 & \text{otherwise.} \end{cases}$

Its scaling function $\phi(t)$ can be described as

$$\phi(t) = \begin{cases} 1 & 0 \le t < 1, \\ 0 & \text{otherwise.} \end{cases}$$

Spatial Zero-Tree Wavelet (EZW)

- Multi-resolution property of DWT gives rise to selfsimilarity property
- The self-similarity property can be used to estimate the location of significant coefficients
- Non-significant coefficients an be eliminated in high compression/low quality images
- The spatial zero tree wavelet is used to achieve high compression rates with the wavelet transformed data

Self-Similarity Property

EZW Algorithm

- Compute the wavelet transform of the image
- Set a threshold T1 near the middle of the range of WT coefficient magnitudes. This gives a large "dead zone" that creates of lots of "insignificant values"
- **f**hese give rise to lots of zerotrees which efficiently handle significance map problem
- Send MSB's of significant coefficients. Use symbols P,N,Z, and t to represent positive, negative, zero, and zerotrees respectively
- Then reduce threshold: Tj+1=Tj/2
- f his causes some former insignificant coeff to become significant
- Repeat above steps, refine old significant by sending next finer bit

Questions?