Digital Image Processing

Topics

- Introduction
- Segmentation of Binary Images
 - Blob Coloring
- Segmentation of Images with Multiple Gray Levels
 - Thresholding
 - Region Growing
 - Split and Merge
 - Texture-based Segmentation
- Using Motion for Segmentation

Introduction

- Image segmentation is the process of partitioning the digital image into multiple regions that can be associated with the properties of one or more objects
- It is an initial and vital step in pattern recognition-a series of processes aimed at overall image understanding.

Definition

In mathematical sense the segmentation of the image I, which is a set of pixels, is partitioning I into n disjoint sets R_1, R_2, \ldots, R_n , called segments or regions such that the union of all regions equals I.

$$\mathbf{I} = \mathbf{R}_1 \mathbf{U} \mathbf{R}_2 \mathbf{U} \dots \mathbf{U} \mathbf{R}_n$$

Segmentation of Binary Images

- Since binary images contain only black or white pixels, segmenting objects from the background is trivial.
- Separating objects from each other is based on the neighborhood relationship of the pixels.

Blob Coloring

- Blob coloring is applied to a binary image for segmenting and labeling each object using a different color.
- 4-neighborhood or 8-neighborhood can be used for segmentation

Blob Coloring Algorithm

- Let the initial color k=1, scan the image from left to right and top to bottom
- If $f(x_c) = 0$ then continue
- Else
 - If($f(x_u) = 1$ and $f(x_L) = 0$)
 - Color $x_c = color x_u$
 - If $(f(x_L) = 1 \text{ and } f(x_u) = 0)$ • Color $x_L = \text{color } x_L$
 - Color $x_c = color x_L$
 - If $(f(x_L = 1 \text{ and } f(x_u) = 1))$
 - Color $x_c = color x_L$
 - Color \mathbf{x}_{L} equivalent to Color \mathbf{x}_{u}

• If
$$(f(\mathbf{x}_L) = 0 \text{ and } f(\mathbf{x}_u) = 0)$$

• Color
$$x_c = k$$

• K=k+1

Segmentation by Thresholding

- Thresholding: segment scalar images by creating a binary partitioning of the image intensities.
- All pixels with a value greater than a threshold value are classified as pixels of the object and the others as the background (or vice-versa)
- Finding a suitable threshold value is not always simple

Using Histogram for Selecting the Threshold Value

Example

Estimating the Threshold Value

- **1.** Select an initial estimate for *T*.
- 2. Segment the image using T. This will produce two groups of pixels: G_1 consisting of all pixels with gray level values >T and G_2 consisting of pixels with values $\leq T$.
- 3. Compute the average gray level values μ_1 and μ_2 for the pixels in regions G_1 and G_2 .
- 4. Compute a new threshold value:

$$T=\frac{1}{2}(\mu_1+\mu_2).$$

5. Repeat steps 2 through 4 until the difference in T in successive iterations is smaller than a predefined parameter T_o .

Thresholding based on Segment Variance

- Grey values in a segment should be relatively homogeneous
- Choose a threshold that minimizes the variance

• Alternatives:

- Minimize the grey value variance *within* segments
- Maximize the variance *between* segments
- Combine these two approaches

Segment Variance

- Histogram: *H*(*v*)
- Normalized histogram:
- Variance of grey values (by definition):

 $\mu = \sum vh(v)$

$$\sigma^2 = \sum_{v} (v - \mu)^2 h(v)$$

 $\left(\sum_{v} h(v) = 1\right)$

• Mean :

Segment Variance – Within Segments

 After thresholding the image into segments 0 and 1, the segment variances are

$$\sigma_0^2 = \sum_{v < t} (v - \mu_0)^2 h(v)$$

$$\sigma_1^2 = \sum_{v \ge t}^{v < t} (v - \mu_1)^2 h(v)$$

 If the global probabilities of a pixel belonging to segment 0 or 1 are h₀ and h₁, then the total variance within segments is

$$\sigma_w^2 = h_0 \sigma_0^2 + h_1 \sigma_1^2$$

Segment Variance – Between Segments

- Alternative: maximize the variance *between* segments.
- The between variance can be defined using the Within-segment variance as

$$\sigma_{\rm b}^2 = \sigma^2 - \sigma_{\rm W}^2$$

OR

$$\sigma_b^2 = h_0(\mu_0 - \mu)^2 + h_1(\mu_1 - \mu)^2$$

Segment Variance – Combined Method

• We can combine the within segment and the between segment approaches by maximizing the ratio:

Adaptive Thresholding

- A single (global) threshold value may not be available for all images.
- A local threshold can be found from the local processing of the image.

Region Growing

- Begins with a set of seed points and from them grows regions by appending neighboring pixels that have properties similar to initial seed.
- Gray level, texture, color, and other local features are used for measuring the similarity

Region Growing Problems

- Selecting initial seed
- Selecting suitable properties for including points
 - Example: In military applications using infra red images, the target of interest is slightly hotter than its environment

Region Split and Merge

- Divide the image into a set of arbitrary disjoint regions.
- Merge/split the regions

Quad-Tree Representation

Texture

• Texture provides measures of properties such as smoothness, coarseness, and regularity.

Texture Based Segmentation

Co-Occurrence Matrix

- Let P be a position operator, and A a k x k matrix.
- a_{ij} shows the number of times that pixels with gray level z_i occur at position given by P relative to points with gray level z_j.
- Matrix A is called co-occurrence matrix and can provide statistical properties of the texture.

Example

- Assume P is one pixel to the right and one pixel below
- Gray level values are : 0, 1, and 2
- Image data:

• Co-occurance matrix is:

$$\mathbf{A} = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$

Statistical Moments of Texture

- Let Matrix C be formed by dividing every element of A by the number of point pairs that satisfy P.
- The following moments are defined to compare textures:
 - 1. Maximum probability

 $\max_{i,j}(c_{ij})$

2. Element difference moment of order k

$$\sum_{i} \sum_{j} (i-j)^{k} c_{ij}$$

3. Inverse element difference moment of order k

$$\sum_{i} \sum_{j} c_{ij} / (i-j)^{k} \qquad i \neq j$$

4. Uniformity

$$\sum_{i} \sum_{j} c_{ij}^2$$

5. Entropy

$$-\sum_{i}\sum_{j}c_{ij}\log_2 c_{ij}$$

The Use of Motion in Segmentation

- Compare two image taken at times t1 and t2 pixel by pixel (difference image)
- Non-zero parts of the difference image corresponds to the non-stationary objects

 $\begin{aligned} \text{dij}(\mathbf{x},\mathbf{y}) &= 1 & \text{if } |f(\mathbf{x},\mathbf{y},t1) - f(\mathbf{x},\mathbf{y},t2)| > \theta \\ 0 & \text{otherwise} \end{aligned}$

Accumulating Differences

- A difference image may contain isolated entries that are the result of the noise
- Thresholded connectivity analysis can remove these points
- Accumulating difference images can also remove the isolated points

Questions?